Combinatorics of the stability space of Fine compactified Jacobians

Rhys Wells†

† University of Liverpool, rhys.wells@liverpool.ac.uk

Motivation:

- $\overline{}$ Fine compactified Jacobians (FCJ) are defined by J. Kass, N. Pagani and O.Tommasi over nodal curves for arbitrary genus in [\[KP22\]](#page-0-0) and [\[PT20\]](#page-0-1).
- $\overline{}$ Classical stability conditions for FCJ have been constructed in [\[OS79\]](#page-0-2) starting from polarisations. A polarisation ϕ is the datum of a rational number for each irreducible component of the curve such that the sum of components is 0.
- $\overline{}$ Generalised stability conditions classify FCJ in [\[KP22\]](#page-0-0) and [\[PT20\]](#page-0-1). These can be described for curves of genus 1. We aim to classify general stability conditions for FCJ of curves of genus 2.

and such that "if we add 1 at the endpoints of all edges in $E(\Gamma \setminus T_i)$ in all possible ways we obtain a set of $k(\Gamma)$ elements". More precisely the last condition requires the set

Generalised stability conditions for FCJ:

Let Γ be a connected undirected finite multigraph. Let $\{T_i\}$ be the collection of spanning trees and $k(\Gamma) = |\{T_i\}|$ be it's complexity.

A stability condition, σ_{Γ} , is the datum of an assignment,

Example. We have the following stability condition for I_4 ,

Remark. For ϕ generic (in an appropriate precise sense). There is a way to define a stability condition σ_{Γ}^{ϕ} $_{\Gamma}^{\phi}$, as the collection of all $d : \text{Vert}(\Gamma) \to \mathbb{Z}$ that are "close enough to ϕ " (in a sense that is defined precisely in [\[OS79\]](#page-0-2)). It can be shown that classical σ_{Γ}^{ϕ} $_{\Gamma}^{\varphi}$ are generalised stability conditions.

Let I_n denote a necklace graph a genus 1 made of n edges and n vertices connected in a cyclic manner.

To make the collection of stability conditions finite we modulo translate and let $\vec{0} \in \sigma_{\Gamma}(T)$ for some $T \in \{T_i\}$. Denote the set of all σ_{Γ} modulo translation by Σ_{Γ} .

 $\overline{}$ We have classified all stability conditions Σ_{Γ} for Γ one of:

$$
\sigma_{\Gamma}: \{T_i\} \to \mathbb{Z}^{\mathrm{Vert}(\Gamma)}
$$

such that

 $\sum \sigma_{\Gamma}(T_i) = 0$ $v \in \text{Vert}(\Gamma)$

$$
N_{\sigma_{\Gamma}} = \bigcup_{T_i} \left(\sigma_{\Gamma}(T_i) + \sum_{\substack{s \in \mathcal{O}(\Gamma \backslash T_i) \\ e \in \text{Edges}(\Gamma \backslash T_i)}} \delta_{s(e)} \right)
$$

to have $k(\Gamma)$ elements, with $\mathcal{O}(\Gamma \setminus T_i)$ the set of orientations on $\text{Edges}(\Gamma \setminus T_i)$.

> Reduce to the classification of genus 1 graphs. More precisely show we extend uniquely from Σ_{I_n} to $\Sigma_{I_n \cup \{e\}}$ for $e \notin I_n$.

UNIVERSITY

[OS79] Tadao Oda and Conjeerveram S Seshadri. Compactifications of the generalized jacobian variety. Transactions of the American Mathematical Society, pages 1–90, 1979.

Project:

In general we propose stability conditions, σ_{Γ} , for genus 2 graphs Γ are unique extensions of σ_{I_n} where $\Gamma = I_n \cup \{e\}$ for $e \notin I_n$.

Challenge:

Determine σ_{Γ} for each genus 2 graph Γ .

Proposed solution:

References

[KP22] Jesse Kass and Nicola Pagani. Classifying fine universal jacobian stabilities. 2022. In preparation.

[PT20] Nicola Pagani and Orsola Tommasi. Geometry of genus one fine compactified universal jacobians. arXiv preprint arXiv:2012.09142, 2020.

Each σ_{Γ} here is σ_{Γ}^{ϕ} $_{\Gamma}^{\phi}$ by taking ϕ to be the average of all $d \in N_{\sigma_{\Gamma}}$.

 $\overline{}$ We have also shown we can extend uniquely from Σ_{I_3} to $\Sigma_{I_3\cup\{e\}},$ Σ_{I_4} to $\Sigma_{I_4\cup\{e_1\}}$, and Σ_{I_4} to $\Sigma_{I_4\cup\{e_2\}}$.