
Combinatorics of the stability space of fine
compactified Jacobians

Rhys Wells

The University of Liverpool

Student Seminar 2023

1 / 32

Table of Contents

1 Introduction

2 Background geometry and stability conditions

3 Algorithm, analysis and conjectures

2 / 32

Optimal torch configurations

Suppose we have a collection of torches which light up a wall at a
given distance. We call a collection of torches which light up the
minimal area, a optimal torch configuration (OTC).

Informal questions
If we fix a single torch, can we determine every possible OTC?
Is there a simply way to state OTC’s?

3 / 32

Optimal torch configurations

Suppose we have a collection of torches which light up a wall at a
given distance. We call a collection of torches which light up the
minimal area, a optimal torch configuration (OTC).

Informal questions
If we fix a single torch, can we determine every possible OTC?
Is there a simply way to state OTC’s?

3 / 32

Dimension 2 example
Consider the case where we have two identical torches.

4 / 32

Dimension 3 example

Consider the case where we have three identical torches.

5 / 32

Simple remarks

It is clear that if every torch takes the same position then the area
is minimal. There are often more than this.

For a configuration to be a OTC, torches in the collection must
be close together. We will come back to this.

6 / 32

Simple remarks

It is clear that if every torch takes the same position then the area
is minimal. There are often more than this.
For a configuration to be a OTC, torches in the collection must
be close together. We will come back to this.

6 / 32

What are OTC’s?

They are data you can associated to a graph.

This data classifies some object related to a curve.
How do you get from a curve X to its graph Γ := ΓX?

7 / 32

What are OTC’s?

They are data you can associated to a graph.
This data classifies some object related to a curve.

How do you get from a curve X to its graph Γ := ΓX?

7 / 32

What are OTC’s?

They are data you can associated to a graph.
This data classifies some object related to a curve.
How do you get from a curve X to its graph Γ := ΓX?

7 / 32

What is the object which this data classifies?

Historically one can associate to a curve X its Jacobian (which
we take to be the moduli space of line bundles of degree g(Γ)).

For a singular curve the Jacobian often fails to be compact. How
do we compactify it?
One way to compactify is to consider “degenerate line bundles”
over X . In particular appropriate subschemes of Simpg(Γ)(X).
A fine compactified Jacobian, FCJ, of X is a connected, open
and proper (i.e. compact) subscheme of Simpg(Γ)(X) (that is
smoothable).

8 / 32

What is the object which this data classifies?

Historically one can associate to a curve X its Jacobian (which
we take to be the moduli space of line bundles of degree g(Γ)).
For a singular curve the Jacobian often fails to be compact. How
do we compactify it?

One way to compactify is to consider “degenerate line bundles”
over X . In particular appropriate subschemes of Simpg(Γ)(X).
A fine compactified Jacobian, FCJ, of X is a connected, open
and proper (i.e. compact) subscheme of Simpg(Γ)(X) (that is
smoothable).

8 / 32

What is the object which this data classifies?

Historically one can associate to a curve X its Jacobian (which
we take to be the moduli space of line bundles of degree g(Γ)).
For a singular curve the Jacobian often fails to be compact. How
do we compactify it?
One way to compactify is to consider “degenerate line bundles”
over X . In particular appropriate subschemes of Simpg(Γ)(X).

A fine compactified Jacobian, FCJ, of X is a connected, open
and proper (i.e. compact) subscheme of Simpg(Γ)(X) (that is
smoothable).

8 / 32

What is the object which this data classifies?

Historically one can associate to a curve X its Jacobian (which
we take to be the moduli space of line bundles of degree g(Γ)).
For a singular curve the Jacobian often fails to be compact. How
do we compactify it?
One way to compactify is to consider “degenerate line bundles”
over X . In particular appropriate subschemes of Simpg(Γ)(X).
A fine compactified Jacobian, FCJ, of X is a connected, open
and proper (i.e. compact) subscheme of Simpg(Γ)(X) (that is
smoothable).

8 / 32

What is the data?

FCJ are constructed by taking subspace of Simpg(Γ)(X) consisting
of degenerate line bundles of particular multidegrees.

Where the multidegree of a degenerate line bundle is a divisor
D ∈ Div(Γ).
It is enough to consider these divisors on the graph of the curve.
FCJ are constructed by a packet of divisors subject to constraints,
we call this a stability condition1.

1Jesse Leo Kass and Nicola Pagani. “Classifying fine universal Jacobian stabilities”. In: Preparation (2022).

9 / 32

What is the data?

FCJ are constructed by taking subspace of Simpg(Γ)(X) consisting
of degenerate line bundles of particular multidegrees.
Where the multidegree of a degenerate line bundle is a divisor
D ∈ Div(Γ).

It is enough to consider these divisors on the graph of the curve.
FCJ are constructed by a packet of divisors subject to constraints,
we call this a stability condition1.

1Jesse Leo Kass and Nicola Pagani. “Classifying fine universal Jacobian stabilities”. In: Preparation (2022).

9 / 32

What is the data?

FCJ are constructed by taking subspace of Simpg(Γ)(X) consisting
of degenerate line bundles of particular multidegrees.
Where the multidegree of a degenerate line bundle is a divisor
D ∈ Div(Γ).
It is enough to consider these divisors on the graph of the curve.

FCJ are constructed by a packet of divisors subject to constraints,
we call this a stability condition1.

1Jesse Leo Kass and Nicola Pagani. “Classifying fine universal Jacobian stabilities”. In: Preparation (2022).

9 / 32

What is the data?

FCJ are constructed by taking subspace of Simpg(Γ)(X) consisting
of degenerate line bundles of particular multidegrees.
Where the multidegree of a degenerate line bundle is a divisor
D ∈ Div(Γ).
It is enough to consider these divisors on the graph of the curve.
FCJ are constructed by a packet of divisors subject to constraints,
we call this a stability condition1.

1Jesse Leo Kass and Nicola Pagani. “Classifying fine universal Jacobian stabilities”. In: Preparation (2022).

9 / 32

Definition of a stability condition

Definition
A stability condition* is a function

AΓ : ST (Γ) → Div0(Γ)

such that

σAΓ
Γ (Γ) :=

⋃
T∈ST (Γ)

{AΓ(T) +
∑

e∈E(Γ)\E(T)

δs(e) | s ∈ O(Γ \ T)}

and |σAΓ
Γ (Γ)| = |ST (Γ)|.

10 / 32

Vine graph revisited

11 / 32

Summary

Analogy Combinatorics
Distance to wall g(Γ)

Position of torches AΓ : ST (Γ) → Div0(Γ)
Torch light area {AΓ(T) +

∑
e∈E(Γ\T) δs(e) | s ∈ O(Γ \ T)}

Total light area σAΓ
Γ (Γ)

12 / 32

FCJ by ϕ-stability conditions i.e Linearity

Classical stability conditions for FCJ have been constructed start-
ing from polarisations2. Where a polarisation ϕ ∈ Rb1(Γ) i.e a
rational number for each vertex of the graph that the sum to
g(Γ) 3.

There is a way to define a ϕ-stability condition, as the collection
of all divisors that are “close enough to ϕ”.
In particular we have,

{ϕ-stability conditions} ⊆ {stability conditions}

We have the opposite inclusion for vine graphs (seen previously)
and for genus 1 graphs.

2Tadao Oda and Conjeerveram S Seshadri. “Compactifications of the generalized Jacobian variety”. In:
Transactions of the American Mathematical Society (1979), pp. 1–90.

3In particular ϕ has to be generic (satisfy some set of inequalities with respect to ϕ and Γ).

13 / 32

FCJ by ϕ-stability conditions i.e Linearity

Classical stability conditions for FCJ have been constructed start-
ing from polarisations2. Where a polarisation ϕ ∈ Rb1(Γ) i.e a
rational number for each vertex of the graph that the sum to
g(Γ) 3.
There is a way to define a ϕ-stability condition, as the collection
of all divisors that are “close enough to ϕ”.

In particular we have,

{ϕ-stability conditions} ⊆ {stability conditions}

We have the opposite inclusion for vine graphs (seen previously)
and for genus 1 graphs.

2Tadao Oda and Conjeerveram S Seshadri. “Compactifications of the generalized Jacobian variety”. In:
Transactions of the American Mathematical Society (1979), pp. 1–90.

3In particular ϕ has to be generic (satisfy some set of inequalities with respect to ϕ and Γ).

13 / 32

FCJ by ϕ-stability conditions i.e Linearity

Classical stability conditions for FCJ have been constructed start-
ing from polarisations2. Where a polarisation ϕ ∈ Rb1(Γ) i.e a
rational number for each vertex of the graph that the sum to
g(Γ) 3.
There is a way to define a ϕ-stability condition, as the collection
of all divisors that are “close enough to ϕ”.
In particular we have,

{ϕ-stability conditions} ⊆ {stability conditions}

We have the opposite inclusion for vine graphs (seen previously)
and for genus 1 graphs.

2Tadao Oda and Conjeerveram S Seshadri. “Compactifications of the generalized Jacobian variety”. In:
Transactions of the American Mathematical Society (1979), pp. 1–90.

3In particular ϕ has to be generic (satisfy some set of inequalities with respect to ϕ and Γ).

13 / 32

FCJ by ϕ-stability conditions i.e Linearity

Classical stability conditions for FCJ have been constructed start-
ing from polarisations2. Where a polarisation ϕ ∈ Rb1(Γ) i.e a
rational number for each vertex of the graph that the sum to
g(Γ) 3.
There is a way to define a ϕ-stability condition, as the collection
of all divisors that are “close enough to ϕ”.
In particular we have,

{ϕ-stability conditions} ⊆ {stability conditions}

We have the opposite inclusion for vine graphs (seen previously)
and for genus 1 graphs.

2Tadao Oda and Conjeerveram S Seshadri. “Compactifications of the generalized Jacobian variety”. In:
Transactions of the American Mathematical Society (1979), pp. 1–90.

3In particular ϕ has to be generic (satisfy some set of inequalities with respect to ϕ and Γ).

13 / 32

Restating our questions

Let us rephrase the questions we had for OTC in terms of stability
conditions for a fixed Γ.

Questions
1 Can we determine every possible stability condition up to transla-

tion?
2 Is every stability condition given by a ϕ?

This is simple for trees (constant) and vine graphs (ϕ given by the
average). What about genus 1 graphs?

14 / 32

Restating our questions

Let us rephrase the questions we had for OTC in terms of stability
conditions for a fixed Γ.

Questions
1 Can we determine every possible stability condition up to transla-

tion?
2 Is every stability condition given by a ϕ?

This is simple for trees (constant) and vine graphs (ϕ given by the
average). What about genus 1 graphs?

14 / 32

Restating our questions

Let us rephrase the questions we had for OTC in terms of stability
conditions for a fixed Γ.

Questions
1 Can we determine every possible stability condition up to transla-

tion?
2 Is every stability condition given by a ϕ?

This is simple for trees (constant) and vine graphs (ϕ given by the
average). What about genus 1 graphs?

14 / 32

Triangle graph revisited

15 / 32

Genus 1 result

Let Γ be any* genus 1 graph.
Note the trees of a genus 1 graph are the same.

It can be shown using the inclusion/exclusion principle that for Γ
the “Torch light areas" of any OTC/stability condition overlap in
a cycle.
Furthermore specifying a T ∈ ST (Γ), a DT ∈ Div0(Γ) and a
permutation τ of the edges of Γ is enough to construct a stability
condition AΓ. That is (T ,DT , τΓ) defines a stability condition AΓ.
It can also be shown that every stability condition AΓ is given by a
ϕ defined by the average of σAΓ

Γ (Γ) (the same as in the vine graph
case).

16 / 32

Genus 1 result

Let Γ be any* genus 1 graph.
Note the trees of a genus 1 graph are the same.
It can be shown using the inclusion/exclusion principle that for Γ
the “Torch light areas" of any OTC/stability condition overlap in
a cycle.

Furthermore specifying a T ∈ ST (Γ), a DT ∈ Div0(Γ) and a
permutation τ of the edges of Γ is enough to construct a stability
condition AΓ. That is (T ,DT , τΓ) defines a stability condition AΓ.
It can also be shown that every stability condition AΓ is given by a
ϕ defined by the average of σAΓ

Γ (Γ) (the same as in the vine graph
case).

16 / 32

Genus 1 result

Let Γ be any* genus 1 graph.
Note the trees of a genus 1 graph are the same.
It can be shown using the inclusion/exclusion principle that for Γ
the “Torch light areas" of any OTC/stability condition overlap in
a cycle.
Furthermore specifying a T ∈ ST (Γ), a DT ∈ Div0(Γ) and a
permutation τ of the edges of Γ is enough to construct a stability
condition AΓ. That is (T ,DT , τΓ) defines a stability condition AΓ.

It can also be shown that every stability condition AΓ is given by a
ϕ defined by the average of σAΓ

Γ (Γ) (the same as in the vine graph
case).

16 / 32

Genus 1 result

Let Γ be any* genus 1 graph.
Note the trees of a genus 1 graph are the same.
It can be shown using the inclusion/exclusion principle that for Γ
the “Torch light areas" of any OTC/stability condition overlap in
a cycle.
Furthermore specifying a T ∈ ST (Γ), a DT ∈ Div0(Γ) and a
permutation τ of the edges of Γ is enough to construct a stability
condition AΓ. That is (T ,DT , τΓ) defines a stability condition AΓ.
It can also be shown that every stability condition AΓ is given by a
ϕ defined by the average of σAΓ

Γ (Γ) (the same as in the vine graph
case).

16 / 32

Stability conditions in higher genus graphs

For graphs of higher genus the spanning trees are not necessarily
so structured.

Therefore persisting with the inclusion-exclusion principle to prove
results is not useful.
So how do we get stability conditions for higher genus graphs?
We use what we know!

17 / 32

Stability conditions in higher genus graphs

For graphs of higher genus the spanning trees are not necessarily
so structured.
Therefore persisting with the inclusion-exclusion principle to prove
results is not useful.

So how do we get stability conditions for higher genus graphs?
We use what we know!

17 / 32

Stability conditions in higher genus graphs

For graphs of higher genus the spanning trees are not necessarily
so structured.
Therefore persisting with the inclusion-exclusion principle to prove
results is not useful.
So how do we get stability conditions for higher genus graphs?

We use what we know!

17 / 32

Stability conditions in higher genus graphs

For graphs of higher genus the spanning trees are not necessarily
so structured.
Therefore persisting with the inclusion-exclusion principle to prove
results is not useful.
So how do we get stability conditions for higher genus graphs?
We use what we know!

17 / 32

Stability conditions from genus 1 graphs

Let Γ(1) denote the set of connected spanning genus 1 subgraphs of
Γ. In addition to the genus 1 result we have two more facts:

1 That
⋃

Γ0∈Γ(1) ST (Γ0) = ST (Γ),and

2 for Γ0 ∈ Γ(1) stability conditions AΓ0 : ST (Γ0) → Div0(Γ0) that
agree on common spanning trees glue together to a function AΓ :
ST (Γ) → Div0(Γ).

Note the total area of light given by the function AΓ may not be
minimal, we must check this!
After fixing a T ∈ ST (Γ) and DT ∈ Div0(Γ), we can use these
facts to describe a method to exhaustively construct all such func-
tions, and therefore all stability conditions up to translation.

18 / 32

Stability conditions from genus 1 graphs

Let Γ(1) denote the set of connected spanning genus 1 subgraphs of
Γ. In addition to the genus 1 result we have two more facts:

1 That
⋃

Γ0∈Γ(1) ST (Γ0) = ST (Γ),

and

2 for Γ0 ∈ Γ(1) stability conditions AΓ0 : ST (Γ0) → Div0(Γ0) that
agree on common spanning trees glue together to a function AΓ :
ST (Γ) → Div0(Γ).

Note the total area of light given by the function AΓ may not be
minimal, we must check this!
After fixing a T ∈ ST (Γ) and DT ∈ Div0(Γ), we can use these
facts to describe a method to exhaustively construct all such func-
tions, and therefore all stability conditions up to translation.

18 / 32

Stability conditions from genus 1 graphs

Let Γ(1) denote the set of connected spanning genus 1 subgraphs of
Γ. In addition to the genus 1 result we have two more facts:

1 That
⋃

Γ0∈Γ(1) ST (Γ0) = ST (Γ),and

2 for Γ0 ∈ Γ(1) stability conditions AΓ0 : ST (Γ0) → Div0(Γ0) that
agree on common spanning trees glue together to a function AΓ :
ST (Γ) → Div0(Γ).

Note the total area of light given by the function AΓ may not be
minimal, we must check this!
After fixing a T ∈ ST (Γ) and DT ∈ Div0(Γ), we can use these
facts to describe a method to exhaustively construct all such func-
tions, and therefore all stability conditions up to translation.

18 / 32

Stability conditions from genus 1 graphs

Let Γ(1) denote the set of connected spanning genus 1 subgraphs of
Γ. In addition to the genus 1 result we have two more facts:

1 That
⋃

Γ0∈Γ(1) ST (Γ0) = ST (Γ),and

2 for Γ0 ∈ Γ(1) stability conditions AΓ0 : ST (Γ0) → Div0(Γ0) that
agree on common spanning trees glue together to a function AΓ :
ST (Γ) → Div0(Γ).

Note the total area of light given by the function AΓ may not be
minimal, we must check this!

After fixing a T ∈ ST (Γ) and DT ∈ Div0(Γ), we can use these
facts to describe a method to exhaustively construct all such func-
tions, and therefore all stability conditions up to translation.

18 / 32

Stability conditions from genus 1 graphs

Let Γ(1) denote the set of connected spanning genus 1 subgraphs of
Γ. In addition to the genus 1 result we have two more facts:

1 That
⋃

Γ0∈Γ(1) ST (Γ0) = ST (Γ),and

2 for Γ0 ∈ Γ(1) stability conditions AΓ0 : ST (Γ0) → Div0(Γ0) that
agree on common spanning trees glue together to a function AΓ :
ST (Γ) → Div0(Γ).

Note the total area of light given by the function AΓ may not be
minimal, we must check this!
After fixing a T ∈ ST (Γ) and DT ∈ Div0(Γ), we can use these
facts to describe a method to exhaustively construct all such func-
tions, and therefore all stability conditions up to translation.

18 / 32

Algorithm to construct a single stability condition

The following runs until a function

AΓ : ST (Γ) → Div0(Γ)

is well-defined.

1 Take T ∈ ST (Γ) and DT ∈ Div0(Γ).
2 For each Γ0 ⊆ Γ(1) which contains T , choose a cycle τΓ0 and

generate AΓ0 using (T ,DT , τΓ0).
3 Ensure the functions AΓ0 agree on common spanning trees.
4 Repeat the previous steps for a different T

′ and DT ′ = AΓ0(T
′
)

which you know.

19 / 32

Algorithm to construct a single stability condition

The following runs until a function

AΓ : ST (Γ) → Div0(Γ)

is well-defined.
1 Take T ∈ ST (Γ) and DT ∈ Div0(Γ).

2 For each Γ0 ⊆ Γ(1) which contains T , choose a cycle τΓ0 and
generate AΓ0 using (T ,DT , τΓ0).

3 Ensure the functions AΓ0 agree on common spanning trees.
4 Repeat the previous steps for a different T

′ and DT ′ = AΓ0(T
′
)

which you know.

19 / 32

Algorithm to construct a single stability condition

The following runs until a function

AΓ : ST (Γ) → Div0(Γ)

is well-defined.
1 Take T ∈ ST (Γ) and DT ∈ Div0(Γ).
2 For each Γ0 ⊆ Γ(1) which contains T , choose a cycle τΓ0 and

generate AΓ0 using (T ,DT , τΓ0).

3 Ensure the functions AΓ0 agree on common spanning trees.
4 Repeat the previous steps for a different T

′ and DT ′ = AΓ0(T
′
)

which you know.

19 / 32

Algorithm to construct a single stability condition

The following runs until a function

AΓ : ST (Γ) → Div0(Γ)

is well-defined.
1 Take T ∈ ST (Γ) and DT ∈ Div0(Γ).
2 For each Γ0 ⊆ Γ(1) which contains T , choose a cycle τΓ0 and

generate AΓ0 using (T ,DT , τΓ0).
3 Ensure the functions AΓ0 agree on common spanning trees.

4 Repeat the previous steps for a different T
′ and DT ′ = AΓ0(T

′
)

which you know.

19 / 32

Algorithm to construct a single stability condition

The following runs until a function

AΓ : ST (Γ) → Div0(Γ)

is well-defined.
1 Take T ∈ ST (Γ) and DT ∈ Div0(Γ).
2 For each Γ0 ⊆ Γ(1) which contains T , choose a cycle τΓ0 and

generate AΓ0 using (T ,DT , τΓ0).
3 Ensure the functions AΓ0 agree on common spanning trees.
4 Repeat the previous steps for a different T

′ and DT ′ = AΓ0(T
′
)

which you know.

19 / 32

Algorithm example

20 / 32

T1

21 / 32

T2

22 / 32

T3

23 / 32

A stability condition

Now that we have AΓ, we must check that |σAΓ
Γ (Γ)| = |ST (Γ)|.

24 / 32

A stability condition from genus 1

The stability condition is given by the following data.

25 / 32

Algorithm to find all stability conditions up to
translation

In the previous example I told you what the cycles where. How
did I know this?

Iteration!
1) Choose a tree, 2) choose cycles, 3) ensure compatibility, 4)
repeat 1-3) till done.
Each time to finish 3) you have a list of possible functions to then
do 1)-3) again with. This is time consuming but is exhaustive4.

4Rhys Wells. Stability conditions fine compactified Jacobians.
https://github.com/rhyswells101/Stability_conditions_fine_compactified_jacobians. [Online; accessed
14-June-2023]. 2023.

26 / 32

https://github.com/rhyswells101/Stability_conditions_fine_compactified_jacobians

Algorithm to find all stability conditions up to
translation

In the previous example I told you what the cycles where. How
did I know this? Iteration!

1) Choose a tree, 2) choose cycles, 3) ensure compatibility, 4)
repeat 1-3) till done.
Each time to finish 3) you have a list of possible functions to then
do 1)-3) again with. This is time consuming but is exhaustive4.

4Rhys Wells. Stability conditions fine compactified Jacobians.
https://github.com/rhyswells101/Stability_conditions_fine_compactified_jacobians. [Online; accessed
14-June-2023]. 2023.

26 / 32

https://github.com/rhyswells101/Stability_conditions_fine_compactified_jacobians

Algorithm to find all stability conditions up to
translation

In the previous example I told you what the cycles where. How
did I know this? Iteration!
1) Choose a tree, 2) choose cycles, 3) ensure compatibility, 4)
repeat 1-3) till done.

Each time to finish 3) you have a list of possible functions to then
do 1)-3) again with. This is time consuming but is exhaustive4.

4Rhys Wells. Stability conditions fine compactified Jacobians.
https://github.com/rhyswells101/Stability_conditions_fine_compactified_jacobians. [Online; accessed
14-June-2023]. 2023.

26 / 32

https://github.com/rhyswells101/Stability_conditions_fine_compactified_jacobians

Algorithm to find all stability conditions up to
translation

In the previous example I told you what the cycles where. How
did I know this? Iteration!
1) Choose a tree, 2) choose cycles, 3) ensure compatibility, 4)
repeat 1-3) till done.
Each time to finish 3) you have a list of possible functions to then
do 1)-3) again with.

This is time consuming but is exhaustive4.

4Rhys Wells. Stability conditions fine compactified Jacobians.
https://github.com/rhyswells101/Stability_conditions_fine_compactified_jacobians. [Online; accessed
14-June-2023]. 2023.

26 / 32

https://github.com/rhyswells101/Stability_conditions_fine_compactified_jacobians

Algorithm to find all stability conditions up to
translation

In the previous example I told you what the cycles where. How
did I know this? Iteration!
1) Choose a tree, 2) choose cycles, 3) ensure compatibility, 4)
repeat 1-3) till done.
Each time to finish 3) you have a list of possible functions to then
do 1)-3) again with. This is time consuming but is exhaustive4.

4Rhys Wells. Stability conditions fine compactified Jacobians.
https://github.com/rhyswells101/Stability_conditions_fine_compactified_jacobians. [Online; accessed
14-June-2023]. 2023.

26 / 32

https://github.com/rhyswells101/Stability_conditions_fine_compactified_jacobians

Question 2)

Now that we have a method to construct all stability conditions up to
translation for a given graph Γ. We can ask the following.

Is every stability condition AΓ, given by ϕ the average of σAΓ
Γ (Γ)

as in the vine and genus 1 graph cases?

27 / 32

Question 2)

Now that we have a method to construct all stability conditions up to
translation for a given graph Γ. We can ask the following.

Is every stability condition AΓ, given by ϕ the average of σAΓ
Γ (Γ)

as in the vine and genus 1 graph cases?

27 / 32

No. Finding an explicit ϕ is hard

Consider the following graph Γ.

For the stability condition given by AΓ(T) = 0⃗ for all T ∈ ST (Γ),
taking ϕ to be the average of σAΓ

Γ (Γ) fails to describe AΓ.

28 / 32

Work around

In general for a given stability condition it is hard to explicitly
describe the ϕ that gives the stability condition.

To bypass this issue we simply ask, if the region, RAΓ
, where the

ϕ terms live, is empty or non-empty.
This is something we can compute with Sagemath from a known
stability condition.

29 / 32

Work around

In general for a given stability condition it is hard to explicitly
describe the ϕ that gives the stability condition.
To bypass this issue we simply ask, if the region, RAΓ

, where the
ϕ terms live, is empty or non-empty.

This is something we can compute with Sagemath from a known
stability condition.

29 / 32

Work around

In general for a given stability condition it is hard to explicitly
describe the ϕ that gives the stability condition.
To bypass this issue we simply ask, if the region, RAΓ

, where the
ϕ terms live, is empty or non-empty.
This is something we can compute with Sagemath from a known
stability condition.

29 / 32

First non-linear stability condition

The first graph to be found with a stability condition which is not
given by a ϕ is,

This occurs because the stability condition requires that ϕ must
satisfy ϕi < ϕj and ϕi > ϕj for some i , j , a contradiction5.

5Filippo Viviani. On a new class of fine compactified Jacobians of nodal curves. 2023. arXiv: 2310.20317
[math.AG].

30 / 32

https://arxiv.org/abs/2310.20317
https://arxiv.org/abs/2310.20317

Finally recall

31 / 32

Conjectures

Applying this algorithm to a range of graphs one sees that any
function AΓ : ST (Γ) → Div0(Γ) obtained by gluing together sta-
bility conditions of genus 1 subgraphs is always stability condition
(we didn’t need to do the check).

Is this true in general?
As stability condition always has compatible cycles on genus 1
subgraphs, is there a structure which can describe this set of data
simply, similar to the polarisation ϕ?

32 / 32

Conjectures

Applying this algorithm to a range of graphs one sees that any
function AΓ : ST (Γ) → Div0(Γ) obtained by gluing together sta-
bility conditions of genus 1 subgraphs is always stability condition
(we didn’t need to do the check). Is this true in general?

As stability condition always has compatible cycles on genus 1
subgraphs, is there a structure which can describe this set of data
simply, similar to the polarisation ϕ?

32 / 32

Conjectures

Applying this algorithm to a range of graphs one sees that any
function AΓ : ST (Γ) → Div0(Γ) obtained by gluing together sta-
bility conditions of genus 1 subgraphs is always stability condition
(we didn’t need to do the check). Is this true in general?
As stability condition always has compatible cycles on genus 1
subgraphs, is there a structure which can describe this set of data
simply, similar to the polarisation ϕ?

32 / 32

	Introduction
	Background geometry and stability conditions
	Algorithm, analysis and conjectures

