Combinatorics of the stability space of fine compactified Jacobians

Rhys Wells

The University of Liverpool

Student Seminar 2023

2 Background geometry and stability conditions

Suppose we have a collection of torches which light up a wall at a given distance. We call a collection of torches which light up the minimal area, a optimal torch configuration (OTC).

Suppose we have a collection of torches which light up a wall at a given distance. We call a collection of torches which light up the minimal area, a optimal torch configuration (OTC).

Informal questions

- If we fix a single torch, can we determine every possible OTC?
- Is there a simply way to state OTC's?

Dimension 2 example

Consider the case where we have two identical torches.

Dimension 3 example

Consider the case where we have three identical torches.

• It is clear that if every torch takes the same position then the area is minimal. There are often more than this.

- It is clear that if every torch takes the same position then the area is minimal. There are often more than this.
- For a configuration to be a OTC, torches in the collection must be close together. We will come back to this.

• They are data you can associated to a graph.

- They are data you can associated to a graph.
- This data classifies some object related to a curve.

- They are data you can associated to a graph.
- This data classifies some object related to a curve.
- How do you get from a curve X to its graph $\Gamma := \Gamma_X$?

 Historically one can associate to a curve X its Jacobian (which we take to be the moduli space of line bundles of degree g(Γ)).

- Historically one can associate to a curve X its Jacobian (which we take to be the moduli space of line bundles of degree g(Γ)).
- For a singular curve the Jacobian often fails to be compact. How do we compactify it?

- Historically one can associate to a curve X its Jacobian (which we take to be the moduli space of line bundles of degree g(Γ)).
- For a singular curve the Jacobian often fails to be compact. How do we compactify it?
- One way to compactify is to consider "degenerate line bundles" over X. In particular appropriate subschemes of Simp^{g(Γ)}(X).

- Historically one can associate to a curve X its Jacobian (which we take to be the moduli space of line bundles of degree g(Γ)).
- For a singular curve the Jacobian often fails to be compact. How do we compactify it?
- One way to compactify is to consider "degenerate line bundles" over X. In particular appropriate subschemes of Simp^{g(Γ)}(X).
- A fine compactified Jacobian, FCJ, of X is a connected, open and proper (i.e. compact) subscheme of $\operatorname{Simp}^{g(\Gamma)}(X)$ (that is smoothable).

 FCJ are constructed by taking subspace of Simp^{g(Γ)}(X) consisting of degenerate line bundles of particular multidegrees.

¹Jesse Leo Kass and Nicola Pagani. "Classifying fine universal Jacobian stabilities". In: *Preparation* (2022).

- FCJ are constructed by taking subspace of Simp^{g(Γ)}(X) consisting of degenerate line bundles of particular multidegrees.
- Where the multidegree of a degenerate line bundle is a divisor D ∈ Div(Γ).

¹Jesse Leo Kass and Nicola Pagani. "Classifying fine universal Jacobian stabilities". In: Preparation (2022).

- FCJ are constructed by taking subspace of Simp^{g(Γ)}(X) consisting of degenerate line bundles of particular multidegrees.
- Where the multidegree of a degenerate line bundle is a divisor $D \in Div(\Gamma)$.
- It is enough to consider these divisors on the graph of the curve.

¹Jesse Leo Kass and Nicola Pagani. "Classifying fine universal Jacobian stabilities". In: Preparation (2022).

- FCJ are constructed by taking subspace of Simp^{g(Γ)}(X) consisting of degenerate line bundles of particular multidegrees.
- Where the multidegree of a degenerate line bundle is a divisor D ∈ Div(Γ).
- It is enough to consider these divisors on the graph of the curve.
- FCJ are constructed by a packet of divisors subject to constraints, we call this a stability condition¹.

¹Jesse Leo Kass and Nicola Pagani. "Classifying fine universal Jacobian stabilities". In: Preparation (2022).

Definition of a stability condition

Definition

A stability condition* is a function

$$A_{\Gamma}:\mathcal{ST}(\Gamma)
ightarrow \mathsf{Div}^0(\Gamma)$$

such that

$$\sigma_{\Gamma}^{\mathcal{A}_{\Gamma}}(\Gamma) := \bigcup_{T \in \mathcal{ST}(\Gamma)} \{ \mathcal{A}_{\Gamma}(T) + \sum_{e \in \mathsf{E}(\Gamma) \setminus \mathsf{E}(T)} \delta_{s(e)} \mid s \in \mathcal{O}(\Gamma \setminus T) \}$$

and $|\sigma_{\Gamma}^{A_{\Gamma}}(\Gamma)| = |\mathcal{ST}(\Gamma)|.$

Vine graph revisited

Analogy	Combinatorics
Distance to wall	$g(\Gamma)$
Position of torches	${\mathcal A}_{\Gamma}: {\mathcal{ST}}(\Gamma) o {Div}^0(\Gamma)$
Torch light area	$\{A_{\Gamma}(T) + \sum_{e \in E(\Gamma \setminus T)} \delta_{s(e)} \mid s \in \mathcal{O}(\Gamma \setminus T)\}$
Total light area	$\sigma_{\Gamma}^{\mathcal{A}_{\Gamma}}(\Gamma)$

• Classical stability conditions for FCJ have been constructed starting from polarisations². Where a polarisation $\phi \in \mathbb{R}^{b_1(\Gamma)}$ i.e a rational number for each vertex of the graph that the sum to $g(\Gamma)^{-3}$.

²Tadao Oda and Conjeerveram S Seshadri. "Compactifications of the generalized Jacobian variety". In: Transactions of the American Mathematical Society (1979), pp. 1–90.

³In particular ϕ has to be generic (satisfy some set of inequalities with respect to ϕ and Γ).

- Classical stability conditions for FCJ have been constructed starting from polarisations². Where a polarisation $\phi \in \mathbb{R}^{b_1(\Gamma)}$ i.e a rational number for each vertex of the graph that the sum to $g(\Gamma)^{3}$.
- There is a way to define a φ-stability condition, as the collection of all divisors that are "close enough to φ".

²Tadao Oda and Conjeerveram S Seshadri. "Compactifications of the generalized Jacobian variety". In: Transactions of the American Mathematical Society (1979), pp. 1–90.

³In particular ϕ has to be generic (satisfy some set of inequalities with respect to ϕ and Γ).

- Classical stability conditions for FCJ have been constructed starting from polarisations². Where a polarisation $\phi \in \mathbb{R}^{b_1(\Gamma)}$ i.e a rational number for each vertex of the graph that the sum to $g(\Gamma)^{3}$.
- There is a way to define a φ-stability condition, as the collection of all divisors that are "close enough to φ".
- In particular we have,

 $\{\phi$ -stability conditions $\} \subseteq \{$ stability conditions $\}$

²Tadao Oda and Conjeerveram S Seshadri. "Compactifications of the generalized Jacobian variety". In: Transactions of the American Mathematical Society (1979), pp. 1–90.

³In particular ϕ has to be generic (satisfy some set of inequalities with respect to ϕ and Γ).

- Classical stability conditions for FCJ have been constructed starting from polarisations². Where a polarisation $\phi \in \mathbb{R}^{b_1(\Gamma)}$ i.e a rational number for each vertex of the graph that the sum to $g(\Gamma)^{3}$.
- There is a way to define a ϕ -stability condition, as the collection of all divisors that are "close enough to ϕ ".
- In particular we have,

 $\{\phi$ -stability conditions $\} \subseteq \{$ stability conditions $\}$

• We have the opposite inclusion for vine graphs (seen previously) and for genus 1 graphs.

³In particular ϕ has to be generic (satisfy some set of inequalities with respect to ϕ and Γ).

²Tadao Oda and Conjeerveram S Seshadri. "Compactifications of the generalized Jacobian variety". In: Transactions of the American Mathematical Society (1979), pp. 1–90.

Let us rephrase the questions we had for OTC in terms of stability conditions for a fixed $\Gamma.$

Let us rephrase the questions we had for OTC in terms of stability conditions for a fixed $\Gamma.$

Questions

- Can we determine every possible stability condition up to translation?
- 2 Is every stability condition given by a ϕ ?

Let us rephrase the questions we had for OTC in terms of stability conditions for a fixed $\Gamma.$

Questions

- Can we determine every possible stability condition up to translation?
- **2** Is every stability condition given by a ϕ ?

This is simple for trees (constant) and vine graphs (ϕ given by the average). What about genus 1 graphs?

Triangle graph revisited

• Note the trees of a genus 1 graph are the same.

- Note the trees of a genus 1 graph are the same.
- It can be shown using the inclusion/exclusion principle that for Γ the "Torch light areas" of any OTC/stability condition overlap in a cycle.

- Note the trees of a genus 1 graph are the same.
- It can be shown using the inclusion/exclusion principle that for Γ the "Torch light areas" of any OTC/stability condition overlap in a cycle.
- Furthermore specifying a *T* ∈ *ST*(Γ), a *D_T* ∈ Div⁰(Γ) and a permutation *τ* of the edges of Γ is enough to construct a stability condition *A*_Γ. That is (*T*, *D_T*, *τ*_Γ) defines a stability condition *A*_Γ.

- Note the trees of a genus 1 graph are the same.
- It can be shown using the inclusion/exclusion principle that for Γ the "Torch light areas" of any OTC/stability condition overlap in a cycle.
- Furthermore specifying a *T* ∈ *ST*(Γ), a *D_T* ∈ Div⁰(Γ) and a permutation *τ* of the edges of Γ is enough to construct a stability condition *A*_Γ. That is (*T*, *D_T*, *τ*_Γ) defines a stability condition *A*_Γ.
- It can also be shown that every stability condition A_{Γ} is given by a ϕ defined by the average of $\sigma_{\Gamma}^{A_{\Gamma}}(\Gamma)$ (the same as in the vine graph case).

• For graphs of higher genus the spanning trees are not necessarily so structured.

- For graphs of higher genus the spanning trees are not necessarily so structured.
- Therefore persisting with the inclusion-exclusion principle to prove results is not useful.

- For graphs of higher genus the spanning trees are not necessarily so structured.
- Therefore persisting with the inclusion-exclusion principle to prove results is not useful.
- So how do we get stability conditions for higher genus graphs?

- For graphs of higher genus the spanning trees are not necessarily so structured.
- Therefore persisting with the inclusion-exclusion principle to prove results is not useful.
- So how do we get stability conditions for higher genus graphs?
- We use what we know!

Let $\Gamma_{(1)}$ denote the set of connected spanning genus 1 subgraphs of Γ . In addition to the genus 1 result we have two more facts:

Let $\Gamma_{(1)}$ denote the set of connected spanning genus 1 subgraphs of Γ . In addition to the genus 1 result we have two more facts:

• That
$$\bigcup_{\Gamma_0 \in \Gamma_{(1)}} ST(\Gamma_0) = ST(\Gamma)$$
,

Let $\Gamma_{(1)}$ denote the set of connected spanning genus 1 subgraphs of Γ . In addition to the genus 1 result we have two more facts:

• That
$$\bigcup_{\Gamma_0\in \Gamma_{(1)}}\mathcal{ST}(\Gamma_0)=\mathcal{ST}(\Gamma)$$
, and

② for Γ₀ ∈ Γ₍₁₎ stability conditions $A_{\Gamma_0} : ST(\Gamma_0) \to \text{Div}^0(\Gamma_0)$ that agree on common spanning trees glue together to a function $A_{\Gamma} : ST(\Gamma) \to \text{Div}^0(\Gamma)$.

Let $\Gamma_{(1)}$ denote the set of connected spanning genus 1 subgraphs of Γ . In addition to the genus 1 result we have two more facts:

- That $\bigcup_{\Gamma_0 \in \Gamma_{(1)}} ST(\Gamma_0) = ST(\Gamma)$, and
- **②** for Γ₀ ∈ Γ₍₁₎ stability conditions $A_{\Gamma_0} : ST(\Gamma_0) \to \text{Div}^0(\Gamma_0)$ that agree on common spanning trees glue together to a function $A_{\Gamma} : ST(\Gamma) \to \text{Div}^0(\Gamma)$.
 - Note the total area of light given by the function A_Γ may not be minimal, we must check this!

Let $\Gamma_{(1)}$ denote the set of connected spanning genus 1 subgraphs of Γ . In addition to the genus 1 result we have two more facts:

- That $\bigcup_{\Gamma_0 \in \Gamma_{(1)}} ST(\Gamma_0) = ST(\Gamma)$, and
- **②** for Γ₀ ∈ Γ₍₁₎ stability conditions $A_{\Gamma_0} : ST(\Gamma_0) \to \text{Div}^0(\Gamma_0)$ that agree on common spanning trees glue together to a function $A_{\Gamma} : ST(\Gamma) \to \text{Div}^0(\Gamma)$.
 - Note the total area of light given by the function A_Γ may not be minimal, we must check this!
 - After fixing a T ∈ ST(Γ) and D_T ∈ Div⁰(Γ), we can use these facts to describe a method to exhaustively construct all such functions, and therefore all stability conditions up to translation.

Algorithm to construct a single stability condition

The following runs until a function

$$A_{\Gamma}: \mathcal{ST}(\Gamma) \to \mathsf{Div}^0(\Gamma)$$

is well-defined.

$$A_{\Gamma}: \mathcal{ST}(\Gamma) \to \mathsf{Div}^0(\Gamma)$$

is well-defined.

• Take
$$T \in ST(\Gamma)$$
 and $D_T \in Div^0(\Gamma)$.

$$A_{\Gamma}: \mathcal{ST}(\Gamma) \to \mathsf{Div}^0(\Gamma)$$

is well-defined.

• Take
$$T \in ST(\Gamma)$$
 and $D_T \in Div^0(\Gamma)$.

② For each Γ₀ ⊆ Γ₍₁₎ which contains *T*, choose a cycle τ_{Γ_0} and generate A_{Γ_0} using $(T, D_T, \tau_{\Gamma_0})$.

$$A_{\Gamma}: \mathcal{ST}(\Gamma) \to \mathsf{Div}^0(\Gamma)$$

is well-defined.

- Take $T \in ST(\Gamma)$ and $D_T \in Div^0(\Gamma)$.
- ② For each Γ₀ ⊆ Γ₍₁₎ which contains *T*, choose a cycle τ_{Γ_0} and generate A_{Γ_0} using $(T, D_T, \tau_{\Gamma_0})$.
- Solution Section A_{Γ_0} agree on common spanning trees.

$$A_{\Gamma}:\mathcal{ST}(\Gamma)\to \mathsf{Div}^0(\Gamma)$$

is well-defined.

• Take
$$T \in ST(\Gamma)$$
 and $D_T \in Div^0(\Gamma)$.

- Sor each Γ₀ ⊆ Γ₍₁₎ which contains *T*, choose a cycle τ_{Γ_0} and generate A_{Γ_0} using $(T, D_T, \tau_{\Gamma_0})$.
- Solution Section A_{Γ_0} agree on common spanning trees.
- Repeat the previous steps for a different T' and $D_{T'} = A_{\Gamma_0}(T')$ which you know.

Algorithm example

(521)

A stability condition

Now that we have A_{Γ} , we must check that $|\sigma_{\Gamma}^{A_{\Gamma}}(\Gamma)| = |\mathcal{ST}(\Gamma)|$.

A stability condition from genus 1

The stability condition is given by the following data.

 In the previous example I told you what the cycles where. How did I know this?

⁴Rhys Wells. Stability conditions fine compactified Jacobians.

https://github.com/rhyswells101/Stability_conditions_fine_compactified_jacobians. [Online; accessed 14-June-2023]. 2023.

 In the previous example I told you what the cycles where. How did I know this? Iteration!

⁴Rhys Wells. Stability conditions fine compactified Jacobians.

https://github.com/rhyswells101/Stability_conditions_fine_compactified_jacobians. [Online; accessed 14-June-2023]. 2023.

- In the previous example I told you what the cycles where. How did I know this? Iteration!
- 1) Choose a tree, 2) choose cycles, 3) ensure compatibility, 4) repeat 1-3) till done.

⁴Rhys Wells. Stability conditions fine compactified Jacobians.

https://github.com/rhyswells101/Stability_conditions_fine_compactified_jacobians. [Online; accessed 14-June-2023]. 2023.

- In the previous example I told you what the cycles where. How did I know this? Iteration!
- 1) Choose a tree, 2) choose cycles, 3) ensure compatibility, 4) repeat 1-3) till done.
- Each time to finish 3) you have a list of possible functions to then do 1)-3) again with.

⁴Rhys Wells. Stability conditions fine compactified Jacobians.

https://github.com/rhyswells101/Stability_conditions_fine_compactified_jacobians. [Online; accessed 14-June-2023]. 2023.

- In the previous example I told you what the cycles where. How did I know this? Iteration!
- 1) Choose a tree, 2) choose cycles, 3) ensure compatibility, 4) repeat 1-3) till done.
- Each time to finish 3) you have a list of possible functions to then do 1)-3) again with. This is time consuming but is exhaustive⁴.

⁴Rhys Wells. Stability conditions fine compactified Jacobians.

https://github.com/rhyswells101/Stability_conditions_fine_compactified_jacobians. [Online; accessed 14-June-2023]. 2023.

Now that we have a method to construct all stability conditions up to translation for a given graph Γ . We can ask the following.

Now that we have a method to construct all stability conditions up to translation for a given graph Γ . We can ask the following.

Is every stability condition A_Γ, given by φ the average of σ^{A_Γ}_Γ(Γ) as in the vine and genus 1 graph cases?

No. Finding an explicit ϕ is hard

Consider the following graph Γ .

For the stability condition given by $A_{\Gamma}(T) = \vec{0}$ for all $T \in ST(\Gamma)$, taking ϕ to be the average of $\sigma_{\Gamma}^{A_{\Gamma}}(\Gamma)$ fails to describe A_{Γ} .

• In general for a given stability condition it is hard to explicitly describe the ϕ that gives the stability condition.

- In general for a given stability condition it is hard to explicitly describe the ϕ that gives the stability condition.
- To bypass this issue we simply ask, if the region, $R_{A_{\Gamma}}$, where the ϕ terms live, is empty or non-empty.

- In general for a given stability condition it is hard to explicitly describe the ϕ that gives the stability condition.
- To bypass this issue we simply ask, if the region, $R_{A_{\Gamma}}$, where the ϕ terms live, is empty or non-empty.
- This is something we can compute with Sagemath from a known stability condition.

First non-linear stability condition

The first graph to be found with a stability condition which is not given by a ϕ is,

This occurs because the stability condition requires that ϕ must satisfy $\phi_i < \phi_j$ and $\phi_i > \phi_j$ for some i, j, a contradiction⁵.

⁵Filippo Viviani. On a new class of fine compactified Jacobians of nodal curves. 2023. arXiv: 2310.20317 [math.AG].

Applying this algorithm to a range of graphs one sees that any function A_Γ : ST(Γ) → Div⁰(Γ) obtained by gluing together stability conditions of genus 1 subgraphs is always stability condition (we didn't need to do the check).

Applying this algorithm to a range of graphs one sees that any function A_Γ : ST(Γ) → Div⁰(Γ) obtained by gluing together stability conditions of genus 1 subgraphs is always stability condition (we didn't need to do the check). Is this true in general?

- Applying this algorithm to a range of graphs one sees that any function A_Γ : ST(Γ) → Div⁰(Γ) obtained by gluing together stability conditions of genus 1 subgraphs is always stability condition (we didn't need to do the check). Is this true in general?
- As stability condition always has compatible cycles on genus 1 subgraphs, is there a structure which can describe this set of data simply, similar to the polarisation ϕ ?