Python

Featurecsv (standard lib)pandas.to_csv()
LibraryBuilt-in (import csv)External (pandas, requires install)
Input/OutputLists, dictsDataFrame
Header rowManual (writer.writerow([...]))Automatic from column names
Data formattingManualHandles types like datetime, NaNs, etc.
Performance (large data)Very fast for simple use casesOptimized for large tables
Compression (gzip, bz2…)Not supported nativelyBuilt-in support via compression=
Index exportN/AOptional (index=False)
Multi-index exportNot supportedSupported
Handling of nullsManualAutomatic (e.g., NaN becomes empty string)
Type preservationManualPreserves types (to the extent CSV allows)
Append modeEasy (open(..., 'a'))Possible but requires care

🔹 Example Comparison

1. Using csv

import csv
 
data = [
    ['name', 'age'],
    ['Alice', 30],
    ['Bob', 25]
]
 
with open('people.csv', 'w', newline='') as f:
    writer = csv.writer(f)
    writer.writerows(data)

You are responsible for formatting rows as lists (or dicts with DictWriter).


2. Using pandas.to_csv()

import pandas as pd
 
df = pd.DataFrame({
    'name': ['Alice', 'Bob'],
    'age': [30, 25]
})
 
df.to_csv('people.csv', index=False)

No manual row handling — pandas handles headers, data alignment, and types.


🔸 When to Use Each

Use csv if:

  • You’re not using pandas.
  • You need lightweight scripts with zero dependencies.
  • You’re working with custom file formats (e.g., pipe-delimited, legacy systems).
  • You’re writing line-by-line or in memory-constrained environments.

Use pandas.to_csv() if:

  • You’re already working with DataFrames.
  • You want fast, bulk export of structured tabular data.
  • You need features like compression, encoding control, or null handling.